If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56a^2+23a=63
We move all terms to the left:
56a^2+23a-(63)=0
a = 56; b = 23; c = -63;
Δ = b2-4ac
Δ = 232-4·56·(-63)
Δ = 14641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14641}=121$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-121}{2*56}=\frac{-144}{112} =-1+2/7 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+121}{2*56}=\frac{98}{112} =7/8 $
| 7b-7b+2b=12 | | 3x+2/4=5x-9/8 | | 3(x+4)-7x=4 | | 5-10(5-3x)=22x+5 | | 5(x-1)=-9(x+2)+31 | | X2-17x+4=0 | | 7j+-16+3j=12 | | 1/3(2b+9)=2/3(6+9/2) | | 1/3-1/7v=-1/2 | | 5x=72-3x4 | | -8x-x7x=11 | | 160=2x3x+2x | | x=4(4)-7/4-9 | | 14a-8a-4a+4a-5a=13 | | 280=7x+28 | | 2(5q+2=2q+20 | | 8x=3.13 | | 6-(n-2)=2(n+3 | | 6-×=12+2x | | -8x—-7x=11 | | 1/3(2b+9)=2/3(6+9/2 | | x=4(0)-7/0-9 | | 9x-1+4x=129 | | 3x2-12x-5=0 | | 5(x+8)=6(x-3) | | 19q-3q+4q-19q+q=16 | | 2-0.01x+0.05=4x-5 | | x+1/15=1/6 | | 19q–3q+4q–19q+q=16 | | 3n=18n | | 6m-m-3m-m=19 | | -3(2x-6)=-12 |